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The diagrammatic expansion in the real-time domain of the one-electron and electron-hole
propagators for the small-polaron problem is presented. For this purpose, special graphs
consisting of fermion lines, multiphonon interaction lines, and migration vertices are used.

The spectral function of the small-polaron propagator is calculated for two cases.

First, the

interaction with a narrow band of optical modes, and second, the interaction with longitudinal
acoustic modes, is considered. The expressions for the small-polaron mobility in the hopping

region are also derived for both models.

I. INTRODUCTION

Since the publication in 1959 of Holstein’ s funda-
mental paper! on small polarons, the problem of
the very low electron mobility in the case of strong
electron-phonon interaction has been the subject of
several theoretical investigations. 27 In this paper
the field-theoretic techniques are applied to the
small-polaron problem. Propagators for small
polarons are introduced and their properties are
investigated. The theory presented leads to some
new results concerning the small-polaron mobility.
One-electron propagators have been studied in
some detail already in the previous paper by the
author and Choi. 8

Small-polaron theory deals with the motion of
electrons in narrow bands. Therefore in calcula-
tions we use the tight-binding approach and the
corresponding Wannier representation. In this
representation the complete set of states for the
particular band is given by the localized states
I7) at the individual cells i of the crystal. The
small-polaron Hamiltonian may be written as

H=¢o2ocle,+ Zawycle;+ Lwda,
i 1,4 Y

—NV2 Y 2R e (g +al), B=1 (1)
i

where c’{ and c; are, respectively, the creation
and annihilation operators for electrons in the lo-
calized states |i), and where ¢, is the local elec-
tron energy and w;; the intercell transfer or re-
sonance integral. af and g, denote the creation
and annihilation operators, respectively, for a
phonon in the phonon mode A. The parameter A

includes the wave vector § and the branch p of the
phonon spectrum. The normal modes X and -\
belong to the same branch, the corresponding
wave vectors being g and -{, respectively. w,

is the phonon frequency and 7, the electron-phonon
coupling constant. N is the number of cells in the
crystal and -ﬁ, the lattice vector of the ith cell.
Additionally, w,; and n, are real, and w;;=w;,;.

The electron-phonon interaction is assumed to
be linear in phonon operators and diagonal with
respect to the localized states 7). If the phonon
frequency is greater than the width of the electron
band, only the diagonal coupling terms are im-
portant. Thisfact justifiestheuseof (1)inthe case
of narrow bands. In the small-polaron theory,
the transfer integrals w;; are considered as a
small perturbation.

In Sec. II one-electron propagators are intro-
duced and their properties are studied. Section
IIT deals with the electron-hole propagators.
Small-polaron mobility is calculated in Sec. IV.

II. ONE-ELECTRON PROPAGATORS

We would like to formulate the theory of propa-
gators for a single polaron. We define the pro-
pagator for the small polaron by

g1, = -«Te,(D)c(0)), (2)

where T is a time-ordering operator and () denotes
the canonical ensemble average over the states of
the crystal with no electrons.” The underlined op-
erators are Heisenberg operators. It is easy to
realize that the diagrammatic expansion of g;,(#)

in the real-time domain is possible. We consider
the second and also the last term of (1) as the per-
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turbation. The effect of the electron-phonon in-
teraction can be taken into account by introducing
a retarded interaction of the electron with itself,
as shown by Puff and Whitfield.® This interaction
is température dependent. In the present problem
only the electron migration term is small. There-
fore the procedure of the perturbation expansion
will not be completely standard.

First we shall consider the propagator g;,(¢) in
the case of the complete electron localization, i.e.,
if w;;=0. This propagator does not depend on ¢
and will be denoted by g(¢). In the perturbation ex-
pansion of g(f) all contractions between fermion
‘operators must be such that the creation operator
is to the right of the annihilation operator in order
to get a nonzero contribution. - For each sequence
of the intermediate times there is only one way to
do this. Hence, the contractions of the fermion
operators give a time factor e of, The result
does not depend on the intermediate times. Be-
cause of this fact, the multiple time integrals
which appear in the individual terms of the per-
turbation expansion can be split into a product of
the double integrals of the individual contractions
between boson operators. The value of such a
double integral is '

N-wln, [ [ aty dty(T{ay (1) + (8] [aa () + a}(8)])

=2N"'n, [(27, +1) - iwyt - 7113“‘”-’:- (T +1) e trt]
=2N"y\(8), 3)

where 7, is the thermal equilibrium number of
phonons in the mode X. The operators in (3) are
now expressed in the interaction representation.

In the 2nth term of the perturbation expansion
there are (2x)! /2"n! different contractions between
boson operators. The contribution of the 2xth
term to g(#) is therefore

—ie ot [- N2 0. (4)
Hence, we have
g(t)=-ieo(t) e 'n(t), (5)

where O(¢) is a step function, ©(¢)=1 and 0 for
t>0 and £<0, respectively, and

S=N"'20,m27% +1),
€=<o"N-“Exw).77M (6)
h(t)=exp{N"' 20, n, [T e* 2t + (7 + 1) ea? ]}
Note that N73,w,n, is a small-polaron binding en-
ergy.

It is convenient to deal with the Fourier trans-
form
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g(z)= f: gt e'*tdt, Imz>0. )

Further we introduce the spectral function A(E)
which is defined by

g(z):/w _AE) dE. (8)

o 2-E-€
In the following we present the calculation of
A(E) for two cases. First, the interaction of the
electron with the optical modes in a narrow fre-
quency band will be considered. Second, the in-
teraction with the longitudinal acoustic modes,
having the Debye spectrum, will be studied.

Optical Branch

The Gaussian function will be used for the den-
sity of phonon modes. The number of modes in
the frequency interval (w, w+ dw).is therefore
ND(w)dw with

= “’°)2) , ©)

1
D= gy e (= 5

where wg is the mean phonon frequency and w, mea-
sures the dispersion of the spectrum. We shall
consider only narrow bands with w; < w, and the
interval of temperatures for which Bw, is less
than or of the order 1 (8=1/k5T). At very low
temperatures, the approximation (9) for the den-
sity function is not good because only the modes

in the lower tail of the spectrum are occupied. In
this region the Gaussian distribution cannot corre-
spond well enough to reality. Keeping in mind the
narrowness of the optical spectrum, it is reason-

‘able to assume that all 7, are equal, 7,=1.

Further, we could approximate 7%, by the occupation
number 7% for the central mode with the frequency
wg. Actually, we shall use a better approximation:

(T + )= 77+ 1) eBlar-wo, (10)

Thg direct evaluation of the function i(f) is now
possible. We obtain

h(f) = ef (18I
f(9=2u et 2cos (@,5) , (11)

2
w=n[7(7+1)]2 P w'{’/s,

where wy=wy - z8ws.

If the exponential function %(#) is expanded into
a power series and its Fourier transform is cal-
culated term by term, we get the following ex-
pression for A(E): ’

A(E)=e°6(E)+B(E),
(12)

w 1 1
B(E)= ¢S FE/? > _u
1=1 m=0 m! (l -m)!
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The spectral function A(E) has a sharp §-function
peak of the integrated intensity ¢S and the con-
tinuous background B(E). = The intensity e~ has
the same mathematical origin as the Debye-Waller
factor in the scattering problems. The background
function is quite complicated. It depends on-the
strength of the electron-phonon coupling, the phon-
on dispersion, and the temperature. If the cou-
pling is weak and the temperature low, only the
processes of the emission and absorption of a
small number of phonons are important. One con-
siders therefore the low-order terms in the ex-
pansion of #(f). These terms contribute to B(E)

in the energy interval of few multiples of wj.
Outside of this interval B(E) is practically zero.
In the small-polaron theory we are actually inter-
ested in the strong-coupling case and the many-
phonon processes. This means #> 1. Here the
background function B(E) becomes relatively sim-
ple only if the variance w,.is small enough as
compared with wy. Then we can neglect the over-
lap in (12) of the Gaussian functions which have
different centers. B(E) has now approximately
separated peaks with centers at nwy, where z is
aninteger. For instance, the shape of the peak
n=0 is obtained by considering only the terms
with 2m =1 in series (12). The most important

of these terms are those with m=u. The vari-
ance of the Gaussian functions in these terms is
about (24)"%w,. In order to avoid the overlap

with the peaks n=zx1, the condition

wy <'§‘(2u)'l/2wo= 30! Sinh%ﬁwo)uzwa (13)

must be satisfied.
The integrated intensity «, of the nth peak of
B(E) is

a,= e &*BV2[L (2u 010 ~ 5] (14)

where I,(x) is a modified Bessel function.

Acoustic Branch

Only the interaction of the electron with the
longitudinal lattice vibrations will be considered.
In the long-wavelength limit such an interaction
is usually of the simple deformation-potential
type, i.e., n,=8/w,, where the coupling param-
eter 8§ has the dimension of the energy. It is
reasonable to assume that at higher frequencies
the coupling constant 7, decreases faster than
8/w,. In the following calculations we use a
phenomenological coupling constant

Mm=(8/w,) e, (15)

where a is a new parameter. H awp>1 and
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kpT> wp, where wp is the Debye angular fre-
quiency, then the calculation of i(f) and S is easy.
By using the Debye density of phonon modes
D(w) = 3Nw?/ w3, we obtain approximately

T o T
h(t)= exp(—T—o W) , S= T, (16)
where T, is a characteristic temperature

To=aw) /68 &y . 17

In the calculation of (16) the integration has been
performed over the interval (0, ) and 7, or fi, +1
have been approximated by ks T/w, .

The spectral function A(E) has a 6 peak of the
integrated intensity ¢S at E=0 and a continuous
background B(E)

— ~S ~aF = _T. " ___].‘____.__
B(E)=2ae"e §1(4T0 (n=1)1n!

=l 2n -k -2)!

X =k =1)]

(2aE)*. (18)

Thus far we have investigated the properties of
the localized electron. In the next step we derive
an approximate expression for g;,(z) with j# { by
taking account of the electron migration terms in
the Hamiltonian.

Consider a particular graph in Fig. 1. The full
and wavy lines represent, respectively, the zero-
order electron and phonon propagators. The mi-
gration vertex is denoted by a cross. Time in-
tegrations over #; and ¢, in the perturbation expan-
sion can be performed easily. By noting that the
integration interval is (¢, #;) for ¢, and (t5, ¢5) for
ty we derive the following contribution of the phon-
on line:

Fauslts = 1) +£,1300) = £, 15(ts = 1) =1y, 15(ts = 15),
(19)
where
Hu) = N-1p, ' "R"R!)[Tz,‘ elant (7, + 1) etart],
(20)

By using the same approach as in the calculation
of the localized particle propagators one realizes

Aimg

ts t 1, t, b

FIG. 1. Migration of the electron accompanied by the
exchange of a phonon.
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that it is possible to sum the contributions of all
graphs with one migration vertex as in Fig. 1,

but with an arbitrary number of phonon lines.

The phonon lines either do or do not bridge the
migration vertex. The result of such a summation
is

—wy, e-2$ e-ié( t5-t1)h“(o)h”(t5 - tl)

t
X ft 15 dis bty — t)h(ts = ty) B3 5 (ts = 8 B35 (85 ~ 1)

1 (21)
where

hyy(t) = exp[2 f,,(0]. (22)

Note that z;;(2)= n(z) .

On the basis of this example one can easily de-
rive a general rule for the calculation of graphs
with an arbitrary number of migration vertices.
For this purpose a new kind of graph is introduced.
First draw the fermion lines and migration vert-
ices, then connect the initial and final points of
the fermion lines in all possible ways by dashed
lines with arrows in the positive time direction.
This is shown in Fig. 2 for the preceding example.
Each fermion line now contributes a factor

—ieSe(t) etet

where ¢ is the time difference between the final
and initial points of the line. Further, each of the
dashed lines gives a factor 23j(t), where i and j
are the corresponding position indices of the lo-
calized particle'and ¢ is the time difference. The
sign + stands for the lines which connect one initial
and one final point of the particle lines. Otherwise
the sign is —=. The product of the line contribu-~
tions and the vertex factors w,; has to be finally
integrated over the intermediate times. The in-
tegration domain is restricted to the region where
all time differences ¢ are positive.

Among the factors h“(t) there are those for which

t=0. See for instance the dashed line a in Fig. 2.
These factors can be fused together with the cor-
responding migration matrix elements in order to
get an effective or renormalized migration matrix
element @, :

Wy5=wishy4(0) . (23)
/—""—4“\\
//// \\\\
P a >
Z =" LT~ . -~ N
// ~ N — . ~
pid ‘l ~ 1/ % \4/ J‘ \\
N - <«
tS o 13 N tg /,’t]
~ PN -
~— — ~ —
- ——— -

FIG. 2. Graph with one migration vertex and multi-
phonon interaction lines.

led

Calculation of the contributions of the graphs
with migration vertices leads to complicated in-
tegrations which usually cannot be performed ana-
Iytically. In the theory of small polarons, the mi-
gration vertices are assumed to be small. This
assumption allows considerable simplification of
the calculations.

Consider the time behavior of a localized elec-
tron propagator g(t), given by formula (5). The
function k() decays in a complicated way from the
initial value e’ towards 1 as f increases from 0 to
infinity. The characteristic decay time 7, is deter-
mined by the width of the central peak of the back-
ground spectral function B(E). In the case of elec-
tron interaction with optical phonons we have
T,~(2u) 2»;'. Similarly, we have T,~a(Ty/T
for interaction with acoustic phonons. The char-
acteristic time is a measure of the time required
for formation of lattice distortion around the elec-
tron. If the migration velocity of the polaron is
sufficiently slow that w;;7,<<1, then the background
spectrum B(E) is not significantly affected by tak-
ing into account graphs containing migration vert-
ices. We can neglect such corrections.

The situation is completely different if one in-
vestigates the effect of electron migration on the
central §-function peak of A(E), This peak, with
an intensity ¢S, describes the undamped propaga-
tion of the electron. Because of the possibility of
migration, new electron energy eigenstates are
Bloch band states and therefore the §-function
peak spreads. In the first approximation in cal-
culating the graph contribution we replace the fac-
tors for the dashed lines by 1, except if the cor-
responding time difference ¢ is 0. Consider an
arbitrary graph which describes the indirect tran-
sition of the electron from the molecule j to the
molecule ¢, The transition takes place through
the localized states Is),..., |I), Im) at intermedi-
ate molecules. It is convenient to deal here with
the Fourier transforms of the propagators. Each
electron line gives a factor gy(z)=e5/(z - €) and
each vertex a factor #,,,. The contribution of such
a graph is

)1/2

8o(2) ;g0 2) W1 80(2)+ + - 80(2)i05s80(2) - (24)

The intermediate molecules are arbitrary with the
exception m=i,l=m,..., s=j. Toavoid this
restriction, we put #;;=0. We would like to sum
up the contributions (24) of all possible intermedi-
ate states. To this aim we introduce the Fourier
transform € (k) of #,,,, defined by

W= Nt Z;E(E) eii"Rm'ﬁ'), (25)

where k is the wave vector in the first Brillouin
zone. By substituting (25) in (24) and summing up



3 SMALL-POLARON PROPAGATORS

over all intermediate states we easily derive the
total contribution

&M z) N2 €

where n -1 is the number of intermediate steps.
By adding up the contributions of the graphs with

n(k) eik (ﬁi-ﬂj (26)

n=1,2,..., we finally obtain
oHE (BB
gu(z)=e'sN-l? m) , 27
with
e(k)=e¢ (k). (28)

This formula is correct also for j=1i and reflects
thetranslational symmetry of the system. Expres-
sion (27) represents a familiar result for motion
in the energy band, except for the factor e5 in
front of the formula. In the small-polaron case
the propagator amplitude is reduced by the factor
$ because only the 5-function peak of the spectral
function for the localized electron participates in
the formation of the band. The temperature de-
pendence of the small-polaron band energy (28) is
a well-known phenomenon.! In the present approxi-
mation the Bloch states have an infinite lifetime.
Next we shall investigate the graphs which pro-
duce the damping of the Bloch states. These are
the graphs in which the dashed lines with ## 0 are
not discarded completely. Consider for instance
the graph in Fig. 3 which corresponds to an in-
direct transition from the localized state | j) to
the state [i). The intermediate molecule is de-
noted by I. Such graphs give the simplest vertex
correction for the migration matrix element i,; .
The vertex correction Ad,,(f) is obtained by sum-
ming the contributions of all graphs of a kind
shown in Fig. 3, with two external lines removed:

A, (D)= -ie o) ett

X204y, [R(E) Ry ;DR (D5 1], (29)

By adding the term -1 in the square brackets of
(29) we avoid the double counting of the contribu-
tions with &;,;(#) = 1.

Now we must substitute in the propagator for-
mula (27) a new band energy e(k)+A€(k z), where

AE(T(, Z) = e-S Ei e"i' (Ri'ni)
X [7 8y (8) et dt . (30)

The real part of Ae(k, z) at the pole z=¢ +e(k) +48,
where 6 is positive and very small, gives the
shift of the Bloch energy, and the imaginary part
the corresponding damping. In view of the small-
ness of w;;, we restrict our attention only to the
calculation of the damping. For the same reason,

1995

- ~
- ~
- ~
Ve & = o~ N
/S P ~_ <\ )
i 7 - ( R j
——r < \ -
< { X < XY <
\ I\\ /
th et //u\v 0
\\\ //
——

FIG. 3. Graph for an indirect transition from ;) to

1d).

we are allmlred to move the pole to z=€+i6. The
damping I'(k) is therefore equal to

eRe(D, e MR 7w,

X f () Ry (DB (OB35(2) =

r(k) =
1]at }. (31)

The most important terms in the series (31) are
those with ¢=4j. In fact, the contribution of the
processes in the case with emission of the phonon
at one molecule and absorption at another is
smaller than when both events take place at the
same molecule. This is a consequence of the de-
structive interference effects in the exponent of
y;(£), where the phase differences of the lattice
waves at two molecules ¢ and j are added over the
entire phonon spectrum. Actually, 4;,(¢) -1 with
i# j is identically zero for the Einstein model of
the phonon spectrum. By taking into account only
the terms i¢=j we get

r(k)=T=e22,n2 Ref [R2(OnA(2) - 1]at. (32)
In this approximation I'(k) has the same value T
for all states of the band. We shall not carry on
the integration in (32) at this point as the same
integral happens to appear later in the calculation
of the small-polaron mobility.

Thus far we have investigated only the behavior
of the central peak of the spectral function of the
propagator g;,(z) with ¢# j. The corresponding
background function is proportional to some power
of the typical w,; and can be neglected in our cal-
culations of the mobility.

III. ELECTRON-HOLE PROPAGATORS

Transport coefficients can be expressed in terms
of the Fourier transforms of the electron-hole
Green’s functions. First, we introduce the tem-
perature-dependent Green’s function

&g (T)=— <<TT_C;(T)£;(T)£;(O)_CJ(O)>> , =BsT<B

(33)

which is most convenient for the calculation of the

electrical conductivity. Here the symbol ({)) de-
notes the grand canonical ensemble average, and

e(H-uN)T c; e-(H-u.N)'r , (34)

E.i(T) =
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where u is a chemical potential and N the number
operator of small polarons. Further, 7, is the
ordering operator with respect to 7.

Note the identity

L (1> 0) = = ({c;(A)C} (T)e (1) c(0))) . (35)

This leads us to consider the two-time tempera-
ture-dependent Green’s function

&ism(T1, T)=(<T.,-£,(1'1)_C_I (T)EJ(T)E;(O)>> (36)

defined for 8= 7y 0 and 8= 7> 0. By substituting
the value B for 7, we obtain - g,,;(r>0). Inthe

P. GOSAR 3

following we shall omit the subscript #jkl when it
proves convenient. It is useful to extend the de-
finition [Eq. (36)] of g(r,, 7) to the negative 7, and
7 regions -B< 1, <0and —BS‘TS' 0 by the pre-
scription

g(TI< O’T)z—g(Tl+BsT)’ (37)
g(Tlr T< 0)=g(71: T+B)-
g(7,, 7) shows therefore a fermionlike behavior
with respect to 7; and a bosonlike behavior with
respect to 7.
The double Fourier transform of (36) reads

1
gz z)=(}"_,e""""')‘1 20 Kp|ct|m) elom+ e (
v m Monop AR 21+ 2+ Wmp

(m| ¢;|m) n| cley| p) _ (m|cie;|n) nl ) p)

Z1+w"’ )

21+ Wy

t e
+(n| cic,| p) o v

with 2, =i(2m’ + 1)1/ and z=i2x'7/B, where m’
and »’ are integers. At the calculation of (38) a
complete set of eigenstates |m) of H - uN has been
inserted between the operators. w, are the cor-
responding eigenvalues and w,,= w, -w,. We are
interested in the properties of the dilute system

of polarons with no mutual interactions. This
means that y- -« and w, are very large and posi-
tive except for the states with no electrons. As
it~ —» the Fourier transform (38) goes to

g(zl:z)=(§e-BE"‘>-l > eEm

Mmyty p

(mlciin)nicle,| pY(plckim)
(21+2+E, ~E,+ u)(21+E, = E,+ 1)’

(39)

where the summation now runs over the states |m)

" with no electrons and states |»z) and |p) with one
electron, E,, E,, and E, are the energies of these
states,

Next consider the time-dependent Green’s function

g, 0)==(T¢, () c](#) ¢; () c}(0)) (40)

defined in the real-time domain (- e, ) for #; and
. The double Fourier transform of g (¢, ) reads

g(21,2)=(§4 e‘BEm)'l Y eEm

mynyp
(m|e, [n)n|cley[p) Bleck|m)
(z2,+2 +E,— E, +i0) (2, + E,,— E,+16) ’
(41)
By com-

where 2z, and 2z are now real frequencies.

e (Gl el +<-1>1c,1m><mlc1|n>>] ,

(38)

zl+wpm

[

paring (41) with (39) we see that the Fourier trans-
form of the temperature-dependent Green’s function
g (74, 7) can be obtained by the analytical continuation
into the upper half of the complex plane of the Four-
ier transform (41) of the time-dependent function

g (t;,1). This is an important result because now

we can do all calculations of the electron-hole
propagators in the real-time domain,

As an example we present in Fig, 4 the simplest
graph for g (£,,¢), in the case /=7 and 2 =4, which
has a similar structure to the graph in Fig. 2.

The contribution of this graph is

hyy (0) Ry (tl) Sij (t) Sy (tl_ H o,
with

(42)

si(t)==ie"* (e n(t) n3i () (43)
The factor %, (#,) in (42) can now be analytically
continued toward ky; (- iB) =k (0) without any in-
termediate steps. On the other hand, the product
84y (t) s4; (¢, - t) should first be Fourier transformed.

e -~
— -
/’/ \\\\
// ~N
P e Ak U RN
e < S [V g S
N I -
ANY N 0
~ 7 N 7
~ -~ ~ ~
S~ S~ -

FIG. 4, Lowest-order graph for g(t, #) [Eq. (40)] in
the case [=7 and k=j.
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Its double Fourier transform is

00 © S“ (Ex) Su (Ez)
f f QB B, G T E,— €+i6) (e~ Ep— €+30)

(44)
!

&i331 (@) =h3, (0)/:[1 dE, dE,; S;;(E,) Si;(E;) g1 2

1997

where Sy, (E) is a spectral function of s;, (¢) defined
by an equation of type (8). Next we perform the
analytical continuation, The final result for the
contribution of the graph in Fig. 4 to the Fourier
transform of gy,,; (7) is therefore

1
(z2,+2—E,—€+u)(z, - Es— €+ 1)

© © b
=h§,(0)f f dE dw Sy (E) Sy; (E +w) ™ Fre=t 1-¢ ‘ )

This expression will be used in Sec. IV in the cal-
culation of the small-polaron mobility.

IV. SMALL-POLARON MOBILITY

The mobility problem leads to the study of the
current-density correlation function. First we in-
troduce the current-density operator

j=-i S—E(ﬁ,—ﬁj)w”dc, , (48)
1

where e is the electron charge and V the volu_gle of
the crystal, and the spectral weight function J(E)
of the current correlation function

Ki®ion=/" T(Ee=aE . (47)

The real partT (w) of the conductivity tensor now
can be written, according to Kubo formula,® as

T=mvw(1-e*)T(w), (48)

where w is the frequency of the applied electric
field. Another useful relation is

T(E)1-e™)=(i /2m) [E(E+i8) -B(E-i0)] , (49)

where E(z) is the Fourier transform of the temper-
ature-dependent Green’s function

B =-(T, im0 . (50)

By substituting (46) in (50) the function g(7) gets
expressed interms of the electron-hole propaga-
tors (33).

In the present paper we shall discuss in detail
only the dc conductivity at high temperatures where
the hopping type of the polaron motion prevails,

In the high-temperature region the electron-hole
propagators g,,; (1) give the largest contribution

to the current. In the case of small w;; such a
propagator can be approximated by the graph shown
in Fig. 4. In this approximation we derive the fol-
lowing expression for the dc conductivity:

Z=-wWw

7(0)=me?8 v*% (R, - B,)(®, - R,)a?,

x [ S (B)e"Ere-w g (51)

Actually the integral in (51) diverges. The diver-
gence is due to the § peak of the integrated in-
tensity e in S;,(E) at E=0, This peak corres-
ponds to the band-type motion of the small polaron,
Higher-order graphs for g,,;(7) would produce
spreading of the peak. For instance, we could
replace the zero-order electron propagators in
Fig. 4 by the band propagators g;;(z) as given by
formula (27). Now the width of the peak at E=0
in S;,(E) spreads for an amount of the order of the
small-polaron bandwidth, By using the spectral
function Sy, (E), corrected in this way, the diver-
gence of (51) disappears. The hopping region of
the small-polaron motion is characterized by the
fact that the main contribution to the conductivity
comes from the background of S, (E). Therefore,
we do not calculate the spreading of the central
peak explicitly, but instead we simply subtract
the divergent term from (51).

In order to calculate the mobility one must
know the concentration » of carriers, The concen-
tration can be derived from the temperature-de-
pendent one-electron propagator

M= TyeDel@) . (52)

If the system of polarons is dilute and the migra-
tion term in (1) represents a small perturbation,
one easily shows that

o

n= =— A(E)e-B(Efe-u)dE= _%’ e*B(G-u)- (53)

vV J.

The expression for the mobility therefore reads
T=1eB 2 (R, - R,)®, - R,) @2, [~ & (E) e*2dE.
(54)

Formula (54) can be put in another sometimes
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useful form. Note that S;,(- E) = S;,(E) e®%. By

using the convolution property of Fourier transforms

we easily find
TJT: eBZ:i(ﬁ{ - ﬁj)(ﬁg - ﬁj) ﬁlzj e-ZS
xRe [,"[R3(t) hi3(d) - 1]dt. (55)

We have added - 1 in the square brackets in order
to avoid the divergence. The integral in (55) is the
same as in formula (32) for the damping I' of the
small-polaron band states.

As an example we apply the theory to the case of
a one-dimensional crystal and a possibility of elec-
tron transfer only between nearest neighbors. The
corresponding migration matrix element is w. The
electron strongly interacts with the optical phonons
in the narrow frequency band which satisfies con-
dition (13). Because of the small-phonon disper-
sion we shall approximate %;;(#) withj#4 by 1 in
the following. In this model we obtain from (54) or
(55) the following approximate expression for the
mobility:

u =72 ea® wPwil e 1(4u), (56)

where «a is the lattice constant and

1) = Z 012 (zxz) (57)

Many-phonon processes correspond to #>1. In
the asymptotic region x > 1

I(x) =2 g ex, (58)

Therefore we have approximately

_ eBa*w® sinh(3Bw,) o2n tanh(Bug/4) (59)
2wm

This formula should be compared with Holstein’s
result! for the hopping motion mobility

ye P eBa wlz/sinhllz(%ﬁw()) e-zn tanh(Bw0/4). (60)
WM
Our expression (59) for the mobility is very sen-
sitive to the width w; of the phonon spectrum,
whereas Holstein’s formula does not depend ex-
plicitely on w, at all. This is the most important
difference. The physical background of our re-
sult is the following: The density of final states
in the hopping process is inversely proportional to
the dispension of the phonon frequencies and there-
fore decreases with increasing w;. For the de-
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rivation of (60) a sufficient dispersion is required.
By substituting for w, in (59) the right-hand side
of the inequality (13), one obtains Holstein’s for-
mula except for the numerical factor /2,

Next we shall consider the case when the elec-
tron is interacting with the acoustic modes. Again,
the electron will be restricted to one-dimensional
motion, However, the phonon modes will be de-
scribed by the three-dimensional Debye spectrum.
In this case the function #;,;(#) with j#i cannot be
approximated by 1. Actually, we get for the near-
est neighbors approximately

HONHOE exp[gTo—T%E <329’;—F)3( 3 f2>]

(61)

where v=s/a and s the sound velocity, Note that

v is of the order of magnitude of the Debye frequen-
cy. In the calculation of (61) the same assumptions
and approximations have been used as before in
deriving formula (16) {or*h(t). Further, the ex-
ponential function '3 ®iR5 in 5, () has been ex-
panded into a power series and only the first three
terms have been taken into account. This can be
justified as va>1. By substituting (61) in (55) we
find

u = Tefatuwia e"i (42)" Zﬂ) (=G
n=1 k=0

(6n—2k—3)!!

- P In=-26-2)11" (62)

with z = 2T/3T0v 202, This result has been obtained
by expanding the exponential function in the inte-
grand into a power series and by integrating term
by term, It is interesting that in the strong-cou-
pling limit z> 1 the small-polaron mobility does
not show here an exponential temperature depen-
dence, characteristic of an activation process.

We could now also easily calculate the band po-
laron mobility because the total site-jump probabil-
ity which can be derived from (55) and the inverse
lifetime of the polaron-band states, given by (32),
are equal. This agrees with Holstein. !

The presented theory shows the usefulness of the
propagator approach to the small-polaron problem.
The perturbation expansion of the one-electron and
electron-hole propagators in terms of special
graphs in the real-time domain allows a better in-
sight in the time development of the individual
processes. Selection of approximations is there-
fore easier.
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It is demonstrated that when the dimensions of a semiconducting crystal are decreased to
sizes of the order of the bulk impurity-electron Bohr radius a, the impurity absorption edge
abruptly shifts to higher energies, while the absorption intensity decreases abruptly (both with-

in a few ag).

The larger the dielectric constant, the larger the dimensions at which the transi-

tional behavior occurs. Various computed results are presented for an idealized model of a
shallow impurity embedded at the center of various simple finite geometries.

INTRODUCTION

In semiconducting crystals, the impurity-elec-
tron' Bohr radius a, may exceed the interlattice
spacing by as much as a few orders of magnitude,?
depending on the values of the effective mass m*
and the dielectric constant € (ay/ay=€em,/m*,
where m, is the electronic mass, and ay~0. 53 A,
the free-hydrogen Bohr radius). So, although a
thin semiconducting crystal may contain a large
enough number of atomic layers to be described,
at least approximately, in terms of bulk (infinite-
crystal) properties, it may nevertheless be small
enough to substantially alter the motion of impurity
electrons, With recent progress in thin-film
technology, and in view of the desirability of per-
forming light-absorption experiments in such crys-
tals, ® finite-size considerations should be of cen-
tral importance in the interpretation of thin-film
data, and, specifically, in deducing bulk properties
from such data. E

In the present paper we consider a very highly
simplified model, where a single impurity is as-
sumed fixed in the center of three specific geo-
metries, illustrating cases where three, two, or
one of the crystal dimensions are (is) finite, re-
spectively: (a) sphere of radius R, (b) cylinder of
radius R, and (c) thin film of half-width R. We em-
ploy an isotropic effective mass m* and assume’

a Coulomb interaction between electron and impu-
rity. The purpose of the various simplifications
is to allow the principal physical effects in such
systems to emerge most clearly and directly, un-

hampered by unessential complications. The ex-
tension to generalizations such as nonisotropic
mass, non-Coulomb interactions, or distributions
of impurities should be evident from the develop-
ment,

For purposes of definiteness let us from this
point on speak in terms of a shallow acceptor!
with binding energy E ,= E, in the bulk, bearing in
mind that a parallel discussion follows as well for
the donor case. Neglecting various broadening
effects, impurity (assisted) absorption of light* on-
sets when the photon energy w satisfies w=E,— E,,
where E, is the energy gap. As w-E, the absorp-
tion rate increases, undergoing a new onset (edge)
at w =E, for unassisted absorption. As detailed
in various places, ® this simplified picture can be
directly generalized to include a series of impu-
rity-electron states, as well as exciton effects.

In our development we will not, for the most part,
consider such effects: rather, we emphasize the
impurity-electron ground state (gs) and its energy
E relative to the gap E,. For example, E, is the
absolute value of E in the infinite crystal (binding
energy or ionization energy). Note that in a

finite crystal the term “binding energy” is misleading,
as the gs energy E as defined here will now take on
positive values; also, one does not have a contin-
uum for energies above E, as in the infinite
crystal.

We are now in a position to point out two
principle ways in which the impurity absorp-
tion is effected for R~a, First, the gs energy E
is changed, so that the frequency at which absorp-



